Signalcentral_banner_160517_v2.png

Laks Srinivasan

Find me on:

Recent Posts

Data Enablers: Opera Solutions Signals Big Data Value

Posted by Laks Srinivasan on Thu, Apr 06, 2017

In this interview with PYMNTS, Laks Srinivasan discusses the challenges and opportunities the Big Data brings to the world's largest enterprises.

Big Data may be everywhere, but that doesn’t mean that companies are able to actually get the most out of it in an efficient and scalable way.

With the notion that the world’s flow of computable information would eventually become the oil of the twenty-first century, Opera Solutions was launched back in 2004 with the goal of addressing the challenges and opportunities emerging as a result of the influx of data that came from more people having increased access to technology and a greater ability to generate even more data.

Read More

Topics: Big Data, Data Science, Machine Learning

Big Data Reflections for 2017

Posted by Laks Srinivasan on Thu, Feb 23, 2017

To predict the future, one must look at the past, says the old adage. To determine what to expect in 2017, we thought it was best to draw lessons from 2016 despite our industry’s yearning for dramatic change. Laks Srinivasan, COO at Opera Solutions, shares his insights into the biggest Big Data trends of 2016 and reflects on where the market is going and how companies will react.

Read More

Topics: Big Data, Data Science, Machine Learning, Artificial Intelligence

The Key to Making Big Data Valuable: Make It Personal

Posted by Laks Srinivasan on Mon, Oct 26, 2015

Most companies realize they are sitting on a treasure trove of customer data that has the potential to deliver tremendous business benefits; however, most also have no idea how to realize those benefits. How can companies use their data to bring in more customers, increase the amount they spend, and make them more loyal? How can companies use data to turn unhappy customers into loyal champions of the brand? And perhaps most important, how can companies use that data to drive a significant increase in revenue?  

Read More

Topics: Big Data, Data Science, Marketing