Edited by Yan Zhang
Many pundits speaking about the state of the nation’s healthcare infrastructure routinely point to fraud, waste, and abuse (FWA) as major reasons for many of the problems the public witnesses every day – increased healthcare costs and the resulting increase in insurance premiums. The net effect is an annual loss of billions of dollars, and these losses affect the public in very real ways.
The size of the healthcare sector, the enormous amount of money involved, and the lack of surveillance and monitoring mechanisms across the healthcare ecosystem make it an attractive target for FWA. According to the Office of Management and Budget, in 2010, about 9%, or $47.9 billion was lost to fraud in Medicare alone. It is therefore imperative to develop effective FWA technologies and solutions for reducing the costs associated with our healthcare system.
Data science and its primary enabling methodology of machine learning represent the country’s best chance for detecting FWA to avoid extraordinary sources of loss. Data science possesses the facilities to make a significant difference healthcare industry budgets and their impact to the public. Opera Solutions is the industry leader in applying Big Data technologies to the most challenging and significant business problems. We are the company charged with developing the analytics to identify fraud for the Centers for Medicare & Medicaid Services (CMS) on the health insurance exchanges. Here’s a look into just how big this challenge is — and some of the approaches we’re taking to overcome one of the costliest burdens in America.