Blog_Header-4
Blog_Banner_v3

Revenue Cycle Management & AI: Working Together to Keep Hospitals Healthy

Posted by Shyam Sunder and Chandler Tarr on Thu, Feb 07, 2019

 

An Unconventional Business Model

The business of healthcare is unlike any other business. The primary objective of a health system is to provide best in class services, rather than to maximize profits. Most people would agree that this is a good thing. It’s also a rare thing in the competitive world of business. The admirable commitment to “patients before profits” puts every health system’s cash flow at constant risk. A health system has more control when it comes to providing services, but relatively little control over collecting payments for these services. Inefficiencies in collection processes and missed charges result in significant lower revenues and directly impact the bottom line.

Read More

Topics: Healthcare, revenue cycle management, Artificial Intelligence, Revenue Cycle AI, Payment Integrity, Revenue Commander

Optimizing Cinema Schedules

Posted by Georgi Cholakov on Thu, Jan 24, 2019

How Do You Solve Box Office Scheduling? Watch a movie.

Read More

Topics: Artificial Intelligence, Optimization, CinemaAI, Customer Yield Management, Telecommunications and Media

Opera Solutions Wins First Place in Kaggle Competition

Posted by Sarah Anderson on Mon, Feb 26, 2018

Michael Jahrer, VP of applied machine learning at Opera Solutions, proves his data science mettle by using deep learning to predict who will be a safe driver in the year ahead. 

Porto Seguro, the third-largest insurance company in Brazil, set out to improve its predictions of who would file an insurance claim in the next year. The company sponsored a competition through Kaggle, the premier platform for predictive modeling and analytics competitions, and our own Michael Jahrer, VP of applied machine learning, took home the win. 

Read More

Topics: Data Science, Machine Learning, Analytics, Artificial Intelligence

Decreased Attention Spans: A New Reason to Perfect Personalization

Posted by Laks Srinivasan on Wed, Jan 10, 2018

Online shoppers are getting antsy. They’re spending less time thinking about purchases before buying — or leaving a site — and drastically shrinking marketers’ opportunity time. We explore the latest trends in online personalization — and how to keep up.

We spend a lot of time talking about personalization in marketing. That’s because it’s both the most profitable way for our customers to leverage artificial intelligence and the most challenging. A new paper by Seth Earley, published in IEEE’s November/December issue of IT Professional, lays out some of these challenges and addresses how best to overcome them.“AI-Driven Analytics at Scale: The Personalization Problem” touches on many of the issues our customers face every day, including maximizing data scientists’ time, developing use cases in a timely fashion, and even using a Signal Layer to help expedite the process. It also cites a new study that examines exactly how much time companies must apply their personalization insights in a real-time setting.

Read More

Topics: Big Data, Analytics, Marketing, Artificial Intelligence

AI: Why Now? An Old Technology Grows Up Fast

Posted by Georges Smine on Fri, Mar 31, 2017


Artificial Intelligence (AI) is helping the enterprise create dynamic new applications and new ways to better serve customers, prevent and cure diseases, detect security threats, and more. We’re seeing how rapid advances in the field as a whole as well as the underlying technology are leading to more real-world opportunities that already are making a big impact. Speaking at a 2017 panel discussion with the The Wall Street Journal, AI luminary Andrew Ng observed, “Things may change in the future, but one rule of thumb today is that almost anything that a typical person can do with less than one second of mental thought we can either now or in the very near future automate with AI.” That’s a startling assessment for what we can expect.

Read More

Topics: Big Data, Data Science, Machine Learning, Artificial Intelligence

Big Data Reflections for 2017

Posted by Laks Srinivasan on Thu, Feb 23, 2017

To predict the future, one must look at the past, says the old adage. To determine what to expect in 2017, we thought it was best to draw lessons from 2016 despite our industry’s yearning for dramatic change. Laks Srinivasan, COO at Opera Solutions, shares his insights into the biggest Big Data trends of 2016 and reflects on where the market is going and how companies will react.

Read More

Topics: Big Data, Data Science, Machine Learning, Artificial Intelligence

AI, Machine Learning, and Deep Learning Explained

Posted by Qi Zhao on Tue, Feb 14, 2017

Artificial intelligence is no longer just evolving nomenclature in IT. With the technology’s recent progress, organizations of all shapes and sizes are taking interest. With the mainstream press and industry analysts from every corner weighing in, it is worth taking stock of the technology and learning how to differentiate between three arguably over-hyped terms: machine learning, artificial intelligence (AI), and deep learning.

It’s best to consider the concentric model depicted in the figure below. AI is shown as the superset since it was the idea that came first, and it has been evolving and expanding since then. A subset of AI is machine learning, which came out of the quest of AI at an early stage. The innermost subset is deep learning, which is just one class of machine learning algorithms. Deep learning is a hot area right now, and the one most typically associated with the rise in AI today.

Read More

Topics: Data Science, Machine Learning, Artificial Intelligence