Signalcentral_banner_160517_v2.png

How Data Science Adds Value to Credit Card Loyalty Programs

Posted by Christopher Bazett on Mon, Oct 06, 2014

Most redemption programs suffer from the same challenge: delivering rewards that customers actually want. To make this possible, the programs offer ever-more rewards, which puts the onus on the customer to find desirable ways to spend their points. In the end, redeeming points can be more of a chore than a reward, ultimately diminishing the value of the very program that was supposed to create value and differentiation in a crowded space. But with millions of customers, no one (or even 100) reward(s) will meet the desires of everyone. So what are credit card issuers to do? How do they put the value back into these programs, so customers are incentivized to choose one card over another?

Read More

Topics: Data Science, Marketing

How Data Science Helps Ease the Pain of Flight Cancelations

Posted by Chunping Wang on Wed, Sep 03, 2014

We’ve all been there. That place in the airport where you’ve just learned your flight has been canceled. If the weather’s bad, you can understand and roll with it. But if it seems arbitrary and royally screws up your plans — well, that’s another story. As a customer, you wonder, “Why do airlines do this? And how do they decide that my flight is canceled when others are not?” But airlines are asking their own questions, namely: “We have to cancel X number of flights, but which flights should we cancel to minimize the loss of revenue and customer loyalty?” Here, we delve into both sides of the issue, and the answers should provide a little context — and hopefully quell the frustration for everyone.

Read More

Topics: Data Science, Signal Hub Technologies, Marketing

The Growing Government Open Data Movement

Posted by Daniel D. Gutierrez on Mon, Jul 07, 2014

It was 7:00 a.m. on a Saturday morning, and the 10th floor of Los Angeles City Hall was filled with more than 450 people gathered to spend their day off of work with their noses buried in their laptops. They were data scientists, and they had come to innovate new technologies to solve complex social problems using the city’s newly open data.

Read More

Topics: Big Data, Data Science

The 5 Best Data Science Tools from the 2014 Hadoop Summit

Posted by Daniel D. Gutierrez on Fri, Jun 20, 2014

The Hadoop Summit conference, hosted by Hortonworks and Yahoo, has become a must-see Big Data event. The Hadoop distributed computing architecture is now an integral part of what it means to be a data scientist, and a few days of concentrated effort each year is enough to get a vision for where the industry is headed. The Hadoop Summit serves this purpose well by providing thought-provoking technical sessions, keynote addresses, and a vendor exhibition that brings many of the major players in the Hadoop ecosystem together under one roof.

Read More

Topics: Data Science, Machine Learning, Events

Data Science As the Panacea for Healthcare Fraud, Waste, and Abuse

Posted by Daniel D. Gutierrez on Thu, Jun 12, 2014

Edited by Yan Zhang

Healthcare fraud, waste, and abuse (FWA) are national problems that affect all of us either directly or indirectly. National estimates project that hundreds of billions of dollars are lost to healthcare FWA on an annual basis. These losses lead to increased healthcare costs and subsequently increased insurance premiums. 

Read More

Topics: Healthcare, Big Data, Data Science, Machine Learning

Data Science: Recommender Engines with Collaborative Filtering

Posted by Daniel D. Gutierrez on Mon, Jun 02, 2014

Ever wonder how services like Netflix or Pandora choose media to suggest to you? If you’ve been reading this blog for a while, you’re familiar — at least a little bit — with recommender engines. In our post “How Machine Learning Will Affect Your Next Vacation,” we talked about the impact machine-learning recommender engines have on regular consumers. But here, we want to dive deeper and talk about the math and science behind recommender engines.

Read More

Topics: Data Science, Analytics, Marketing

What Is Data Science?

Posted by Daniel D. Gutierrez on Tue, May 06, 2014

As a relatively new term, “data science” can mean different things to different people due in part to all the hype surrounding the field. Often used in the same breath, we also hear a lot about “big data” and how it is changing the way that companies interact with their customers. This begs the question — how are these two technologies related? Unfortunately, the hype often masks reality and worsens the Signal-to-noise ratio when it comes to our increasingly data-driven society. Rest assured, there truly is something deep and profound representing a paradigm shift in our society surrounding data, but the hype isn’t helping to clarify data science’s exact role in Big Data. In this article, we strive to put to rest many of the misunderstandings surrounding data science.

Read More

Topics: Data Science, Machine Learning, Analytics

How Data Science Impacts Intelligent Retargeting

Posted by Daniel D. Gutierrez on Thu, Apr 24, 2014

Conversion rates for online retailers are generally considered pretty dismal by most common measures. Imagine if only 1–3 percent of shoppers entering your store ended up making a purchase. Maybe you’d think of trying a new strategy. The new strategy employed by many online retailers is called retargeting — the use of search and display campaigns to target the 97 percent of visitors who came to your e-commerce site but didn’t convert, meaning they did not make a purchase, fill out a form, or request a demo or call. Retargeting works by keeping track of people who visit your site and displaying your retargeting ads to them as they visit other sites online.

Read More

Topics: Big Data, Data Science, Analytics

Is Big Data the Problem or the Solution?

Posted by Todd Higginson on Fri, Apr 18, 2014

Be careful what you wish for. Most of us probably heard that phrase at some point during our childhood, or perhaps even more recently. The point is valid. When wishing for something we tend to focus on the positives while ignoring the potential negatives. After all, who would wish for something that had a downside?

Read More

Topics: Big Data, Data Science, Analytics

Increase Revenue and Improve Business Strategy with Retail Analytics

Posted by Daniel D. Gutierrez on Mon, Apr 07, 2014

This beginner’s guide to retail analytics will help you get the most out of the data you’re probably already collecting.

When people shop online, they know they’re sharing personal data to be collected and used for marketing purposes. And yet we’re surprised by how many companies fail to do even the bare minimum of analysis with the data they’ve painstakingly gathered. By implementing just a few basic analytics techniques into your marketing practices, you can quickly gain insight into your site’s performance, your customers’ satisfaction, and the effectiveness of your marketing campaigns. And if you take your analytics a few steps further, you can actually predict what your customers want and gain specific recommendations about how best to market to them — whether you have hundreds of customers or millions of them.

Read More

Topics: Big Data, Data Science, Analytics, Signals, Marketing