Blog_Header-4
Blog_Banner_v3

5 Things to Consider When Buying a Big Data Solution

Posted by Abhishek Rathi on Thu, Dec 17, 2015

Any time you sign onto a long-term agreement for your company, you're making a major commitment. These five critical considerations should make the decision-making process a little easier.

Buying Big Data software and services is a Big Deal — regardless of the size of your organization. The category is ambiguous: There are too many providers offering too many flavors of Big Data software and services, and implementing the wrong or inadequate tools and technologies can derail your efforts. In addition, technology and business needs are evolving quickly, so companies need a solution that is agile and doesn’t become obsolete in five years. In the same vein, once a certain path is chosen and a significant investment is made, companies may be stuck with that decision for years to come. And finally, while your organization likely knows it needs a Big Data solution, those who make the purchasing decisions may not have a full understanding of all the disciplines involved in deploying one to fully exploit its benefit and transform your business.

Read More

CMS Chooses Opera Solutions for Analytics — Again

Posted by Sarah Anderson on Tue, Nov 17, 2015

Once again, we are pleased to announce that CMS, the Centers for Medicare and Medicaid Services, has chosen Opera Solutions for a three-year, $28 million contract that will enable Opera Solutions to provide the operational analytics that drive the Health Insurance Marketplaces of the Affordable Care Act. In this role, Opera Solutions will continue to build on the strong foundation it has built in the first three years of this relationship, adding more advanced analytics and ensuring data integrity across the widespread, diverse data environment within CMS.

Read More

Topics: Healthcare, Press Releases

The Key to Making Big Data Valuable: Make It Personal

Posted by Laks Srinivasan on Mon, Oct 26, 2015

Most companies realize they are sitting on a treasure trove of customer data that has the potential to deliver tremendous business benefits; however, most also have no idea how to realize those benefits. How can companies use their data to bring in more customers, increase the amount they spend, and make them more loyal? How can companies use data to turn unhappy customers into loyal champions of the brand? And perhaps most important, how can companies use that data to drive a significant increase in revenue?  

Read More

Topics: Big Data, Data Science, Marketing

Analytics in Healthcare: How to Survive the ICD-10 Transition

Posted by Sarah Anderson on Thu, Oct 01, 2015

Is now the right time to add machine-learning analytics into your charge-capture management system?

ICD-10 is here and chances are, as a provider, you’re as ready for it as you can be, knowing there could be some hiccups and impact on revenues. Most predict that the impact will be confined to inpatient revenues, driven by significant adjustment issues in grouper methodologies. But what if the impact extends well beyond that, to outpatient revenues?

Read More

Topics: Healthcare, Machine Learning

How Natural Language Processing Can Improve Spend Analytics

Posted by Sushil Sharma on Wed, Aug 19, 2015

Have you ever wondered how Google or Hotmail finds and blocks a single spam email out of billions of emails? Or how companies analyze tweets for customer sentiment? Or how questionable content is identified on a Website? Natural language processing (NLP) does this in real time — and it can be used for a lot more than spam filtering.

When it comes to analyzing a company's spend, the old adage "what gets measured gets managed" is definitely true. However, measuring an enterprise's spend when you have free-text fields, or fields where employees can type in any response they want, can be an insurmountable task. Rarely do two people use the same words and phrases to describe the same thing. Even spelling varies. These variations make measuring how much is being spent on a given category or with a given vendor a very common challenge.

Read More

Topics: Big Data, Supply Chain & Operations

Analytics: How to Predict Future Behavior

Posted by Alex Guazzelli on Thu, Jun 25, 2015

Signals empower us to predict the future by learning from the past. 

We all learn from the past. So if you failed a mathematics exam in school, you learned you had to study harder not to fail the next one. Events that happened in the past can be measured in many different ways. Measuring a past event puts it into focus. In data mining, this process translates into creating a descriptive feature to describe or tell a story about the past in some way, shape, or form.

We call these descriptive features Signals. Signals are the indicators extracted from raw data that have proven to be valuable for solving a particular problem. Signals can also be created from other Signals by transforming one piece of information into something more meaningful or interesting. For example, using the initial Signal extracted from raw data — in this case, a test score — we can create several Signals that capture past school performance in mathematics and science for a certain student.

Read More

Topics: Signal Hub Technologies, Analytics, Signals

How an Integrated Data Analytics Platform Can Help Tear Down Silos and Spark Collaboration

Posted by Jon Lexa on Thu, Jun 04, 2015

Are your employees communicating effectively? Find out how one company got everyone speaking the same language.

The larger a company gets, the more siloed it can become, and relying on happy hours, retreats, or top-down mandates are not enough to break these silos down. No matter how hard leadership tries, people have a difficult time getting on the same page when they all have different business objectives. And no company is immune. Even Apple has struggled with silos. Steve Jobs, in an effort to deconstruct silos, set up Apple's headquarters to encourage "collisions," or interactions between people who may not have necessarily interacted. 

Read More

Topics: Signal Hub Technologies, Analytics

3 Big Ways Analytics Will Improve Summer Travel

Posted by Sarah Anderson on Tue, May 26, 2015

Travel season is upon us, and what used to create excitement and anticipation now creates dread and anxiety. Flying is certainly not what it used to be, but thankfully, it’s also getting a little bit better, thanks to data science and advanced analytics. The world’s largest airlines generate and consume huge amounts of data on hundreds of millions of passengers, and that data is finally paying off for travelers. Of course, not all airlines use data the same way, and some of them hardly use it at all. But here, we take an inside look at those that do to give you the three best ways advanced analytics are improving the travel experience for over 200 million passengers.

Read More

Topics: Signal Hub Technologies

The Realization of Personalized Marketing

Posted by Sarah Anderson on Thu, May 07, 2015

2015 could be the year that true personalization finally takes hold, but to achieve it, you’ll need to change the way you think about marketing.

Customers expect to be treated as individuals. They require relevancy and prefer having a relationship with a company that keeps track of their preferences, purchases, and correspondence. Customers are ready for personalized marketing, and now, finally, more and more companies are, too.

Read More

Topics: Analytics, Marketing

How Data Science Adds Value to Credit Card Loyalty Programs

Posted by Christopher Bazett on Mon, Oct 06, 2014

Most redemption programs suffer from the same challenge: delivering rewards that customers actually want. To make this possible, the programs offer ever-more rewards, which puts the onus on the customer to find desirable ways to spend their points. In the end, redeeming points can be more of a chore than a reward, ultimately diminishing the value of the very program that was supposed to create value and differentiation in a crowded space. But with millions of customers, no one (or even 100) reward(s) will meet the desires of everyone. So what are credit card issuers to do? How do they put the value back into these programs, so customers are incentivized to choose one card over another?

Read More

Topics: Data Science, Marketing