The Realization of Personalized Marketing

Posted by Sarah Anderson on Thursday, 07 May 2015

2015 could be the year that true personalization finally takes hold, but to achieve it, you’ll need to change the way you think about marketing.

Customers expect to be treated as individuals. They require relevancy and prefer having a relationship with a company that keeps track of their preferences, purchases, and correspondence. Customers are ready for personalized marketing, and now, finally, more and more companies are, too.

Read More

Tags: Analytics, Marketing

How Data Science Adds Value to Credit Card Loyalty Programs

Posted by Christopher Bazett on Monday, 06 Oct 2014

Most redemption programs suffer from the same challenge: delivering rewards that customers actually want. To make this possible, the programs offer ever-more rewards, which puts the onus on the customer to find desirable ways to spend their points. In the end, redeeming points can be more of a chore than a reward, ultimately diminishing the value of the very program that was supposed to create value and differentiation in a crowded space. But with millions of customers, no one (or even 100) reward(s) will meet the desires of everyone. So what are credit card issuers to do? How do they put the value back into these programs, so customers are incentivized to choose one card over another?

Read More

Tags: Data Science, Marketing

How Telcos Are Using Signals to Drive Savings and Revenues

Posted by Ankur Desai on Thursday, 25 Sep 2014

When to nudge a delinquent customer for a payment — that is the question. Or rather, that is one of many — many — questions that Signals are helping telecom companies (telcos) answer. Because when to call and ask for payment can actually help determine whether to call at all, and eliminating calls can lead to significant savings. So how do Signals do this? And more important, how can telcos, specifically, take advantage of these Signals to improve customer experience and maximize bottom-line impact?

Read More

Tags: Analytics, Signals, Marketing, Supply Chain & Operations

How Data Science Helps Ease the Pain of Flight Cancelations

Posted by Chunping Wang on Wednesday, 03 Sep 2014

We’ve all been there. That place in the airport where you’ve just learned your flight has been canceled. If the weather’s bad, you can understand and roll with it. But if it seems arbitrary and royally screws up your plans — well, that’s another story. As a customer, you wonder, “Why do airlines do this? And how do they decide that my flight is canceled when others are not?” But airlines are asking their own questions, namely: “We have to cancel X number of flights, but which flights should we cancel to minimize the loss of revenue and customer loyalty?” Here, we delve into both sides of the issue, and the answers should provide a little context — and hopefully quell the frustration for everyone.

Read More

Tags: Data Science, Signal Hub Technologies, Marketing

The Growing Government Open Data Movement

Posted by Daniel D. Gutierrez on Monday, 07 Jul 2014

It was 7:00 a.m. on a Saturday morning, and the 10th floor of Los Angeles City Hall was filled with more than 450 people gathered to spend their day off of work with their noses buried in their laptops. They were data scientists, and they had come to innovate new technologies to solve complex social problems using the city’s newly open data.

Read More

Tags: Big Data, Data Science

My Struggle With Marketing Automation

Posted by Todd Higginson on Monday, 30 Jun 2014

Marketing automation's time has finally come, but it's been a long, tortuous road.

I’m a big fan of marketing automation. My experience goes back a few years. I was just getting settled at a new company when our CFO received a renewal invoice from a marketing automation vendor. She didn’t know how we were using the software, and neither did I. 

Read More

Tags: Big Data, Machine Learning, Marketing

The 5 Best Data Science Tools from the 2014 Hadoop Summit

Posted by Daniel D. Gutierrez on Friday, 20 Jun 2014

The Hadoop Summit conference, hosted by Hortonworks and Yahoo, has become a must-see Big Data event. The Hadoop distributed computing architecture is now an integral part of what it means to be a data scientist, and a few days of concentrated effort each year is enough to get a vision for where the industry is headed. The Hadoop Summit serves this purpose well by providing thought-provoking technical sessions, keynote addresses, and a vendor exhibition that brings many of the major players in the Hadoop ecosystem together under one roof.

Read More

Tags: Data Science, Machine Learning, Events

Data Science As the Panacea for Healthcare Fraud, Waste, and Abuse

Posted by Daniel D. Gutierrez on Thursday, 12 Jun 2014

Edited by Yan Zhang

Healthcare fraud, waste, and abuse (FWA) are national problems that affect all of us either directly or indirectly. National estimates project that hundreds of billions of dollars are lost to healthcare FWA on an annual basis. These losses lead to increased healthcare costs and subsequently increased insurance premiums. 

Read More

Tags: Healthcare, Big Data, Data Science, Machine Learning

Data Science: Recommender Engines with Collaborative Filtering

Posted by Daniel D. Gutierrez on Monday, 02 Jun 2014

Ever wonder how services like Netflix or Pandora choose media to suggest to you? If you’ve been reading this blog for a while, you’re familiar — at least a little bit — with recommender engines. In our post “How Machine Learning Will Affect Your Next Vacation,” we talked about the impact machine-learning recommender engines have on regular consumers. But here, we want to dive deeper and talk about the math and science behind recommender engines.

Read More

Tags: Data Science, Analytics, Marketing

Data vs. Gut Instinct: How Will You Drive Your Business?

Posted by Daniel D. Gutierrez on Tuesday, 20 May 2014

Corporate executives make dozens of business decisions every day — most of which are invisible to the general population. But one business decision of late stands out as a stark exception: CNN’s decision to focus on missing Malaysian flight 370 (MH370) long after other news sources moved on. Some CNN watchers grew tired of the endless coverage, especially as other big stories fought for attention elsewhere. Yet CNN seemed to be stubbornly obsessed with the missing flight. For the first time in a long time — possibly ever — people were questioning why an entire network was ignoring major human interest stories — including a sunken ferry with nearly 300 teenage casualties in South Korea and 200 kidnapped schoolgirls in Nigeria — in favor of one human interest story that was no longer news. CNN even became the butt of jokes for its coverage.

Read More

Tags: Big Data, Analytics