Signalcentral_banner_160517_v2.png

Ensuring Predictive Analytics Success with Data Preparation & Quality

Posted by Daniel D. Gutierrez on Fri, Mar 24, 2017

If you’re in the business of pretty much anything, you’ve got a lot of important data coming in from a lot of different places — both internal and external. What you might be lacking are some best practices that could help you access or see all of that data and be in a position to extract important insights that could nudge your business into new competitive directions.

But what data is relevant to your business and where is it? Can you access it when you want to? Do you know that it’s accurate, current, clean, and complete? Can you easily pull all the data together, no matter what format it’s in or how often it changes?

Basically, is your data ready to support analytics?

Read More

Topics: Big Data, Data Science, Data Equity

Data Science Maturity: A Take on Maslow’s Hierarchy of Needs

Posted by Anatoli Olkhovets on Wed, Mar 15, 2017


In my role of leading Product Management and Presales at Opera Solutions, I am constantly exposed to direct customer interactions, most often in the early stages of the sales cycle. In these meetings, part of my job is to assess our prospective customer’s pain points and needs as much as they are assessing our products, technology, and capabilities. Thus, given the exposure we get at Opera Solutions, I am in a good position to understand real-world business needs around analytics across industries.  

We often talk about corporate cultures, but the experience with hundreds of customers led me to think of corporate psychology, and juxtaposing Maslow’s hierarchy of needs to the current state of data science adoption and readiness in the industry. Companies need to recognize the stage they are in and not be seduced by the hype or promise of the technology. Data science adoption needs not follow a sequential maturity process; dynamic corporations can certainly accelerate things when the need and will exist. So for fun, here’s a take on Maslow’s Hierarchy of Needs adapted to data science.

Read More

Topics: Big Data, Data Science

Big Data Reflections for 2017

Posted by Laks Srinivasan on Thu, Feb 23, 2017

To predict the future, one must look at the past, says the old adage. To determine what to expect in 2017, we thought it was best to draw lessons from 2016 despite our industry’s yearning for dramatic change. Laks Srinivasan, COO at Opera Solutions, shares his insights into the biggest Big Data trends of 2016 and reflects on where the market is going and how companies will react.

Read More

Topics: Big Data, Data Science, Machine Learning, Artificial Intelligence

AI, Machine Learning, and Deep Learning Explained

Posted by Qi Zhao on Tue, Feb 14, 2017

Artificial intelligence is no longer just evolving nomenclature in IT. Everyone is taking interest. With the mainstream press and bloggers from every corner weighing in, it is worth taking stock of the nomenclature and learning how to differentiate three overly used key terms: artificial intelligence (AI), machine learning, and deep learning. The simplest way to think of their relationship is to visualize them as a concentric model (as depicted in the figure below) with AI — the idea that came first and has since been evolving — having the largest area. This is followed by machine learning, which blossomed later and is shown as a subset of AI. Inside both of those is deep learning, which is just one class of machine learning algorithms but one that is currently driving today’s AI explosion.

Read More

Topics: Data Science, Machine Learning, Artificial Intelligence

How to Recruit Data Scientists

Posted by Tim Bridges on Tue, Feb 07, 2017

A guide from the head of HR at a leading analytics company

Data scientists are in higher demand than ever before. According to the latest CrowdFlower survey, 79% of respondents reported a data scientist shortage in 2015. In 2016, that number grew to 83%. The race is on to find skilled people who can organize, structure, and make business sense out of Big Data sets. People with heavy STEM, analytics, and conceptual skills, and the attendant work-friendly personality traits (insatiable curiosity, ability to prioritize, and a healthy dose of skepticism, to name a few), can virtually write their own tickets.

Read More

Topics: Big Data, Data Science, Analytics

7 Steps to Prepare for Data Science Adoption

Posted by Anatoli Olkhovets on Wed, Feb 01, 2017

 

Everywhere you turn, both business and IT talk about data science. But there’s also trepidation about how to get started, especially in the context of attaining an organization’s business goals and objectives beyond the realm of lab or departmental experimentation.

Read More

Topics: Big Data, Data Science

The Relentless Progress of Big Data and Machine Learning Technology

Posted by Anatoli Olkhovets on Tue, Oct 04, 2016

“Didn’t you just go to a similar Big Data conference recently?” my wife asked me. “How much could have changed in a few months?” I was hesitating about attending another conference in a short time span. My wife is right about most things, but in this case, I am glad I didn’t listen and went anyway. I learned about many new advances in both commercial and open source tools and across the whole technology stack: new hardware, in-memory databases, and new-and-improved tools.

Read More

Topics: Big Data, Data Science, Machine Learning, Hadoop, Signal Hubs, Spark

Data Science for Business Users — An Overview of Popular Techniques

Posted by Anatoli Olkhovets on Thu, Aug 04, 2016

Everybody seems to be talking about machine learning these days, and a quick check of Google returns 21.2 million search results for the term. Clearly, this is a popular topic. Yet the term “machine learning” can have many different meanings, depending on the context in which it is being discussed. It is also associated with an equally lengthy list of data science techniques and technologies. Business leaders often feel overwhelmed by this rather bewildering array of terms, analytical approaches, and technology solutions. There are hundreds of algorithms, with new variants seemingly appearing every day. Researching them online does not seem to clarify the choices or point to an obviously superior decision, as most articles target deep experts and revolve around nuances of a particular model or open source package. As a result, business leaders can be reluctant to adopt something they don’t fully understand, resulting in missed opportunities.

Read More

Topics: Data Science, Machine Learning, Analytics

5 Obstacles to Achieving Scalable Data Science, and How to Overcome Them

Posted by Anatoli Olkhovets on Wed, Jun 22, 2016

The struggle is real — and it’s becoming increasingly apparent to companies that have dipped their toes into popular data science tools. As enterprises test the limits of their new tools, old technology, and data scientists’ time, their infrastructure is starting to show its cracks. Read on to see how these issues are revealing themselves — and more importantly — gather some ideas on what to do about it.

Over the past year, I have been averaging 2–3 customer meetings per week, resulting in over 100 customer and partner conversations around Big Data, analytics, and data science for the enterprise. From these conversations, I have found one key recurring theme: scale. Large enterprises no longer want to build one model quickly or implement just one use case in production. They all struggle with a large backlog of ideas. They need a way to rapidly turn these many ideas into real use cases that deliver tangible business value.

However, many companies simply can’t find a pathway to make this happen. Across my numerous conversations, I noticed very similar patterns and identified 5 common obstacles that can prevent companies from achieving scale for data science.

Read More

Topics: Big Data, Data Science, Signal Hub Technologies, Machine Learning, Hadoop, Analytics, Spark

The Key to Making Big Data Valuable: Make It Personal

Posted by Laks Srinivasan on Mon, Oct 26, 2015

Most companies realize they are sitting on a treasure trove of customer data that has the potential to deliver tremendous business benefits; however, most also have no idea how to realize those benefits. How can companies use their data to bring in more customers, increase the amount they spend, and make them more loyal? How can companies use data to turn unhappy customers into loyal champions of the brand? And perhaps most important, how can companies use that data to drive a significant increase in revenue?  

Read More

Topics: Big Data, Data Science, Marketing